Artificial

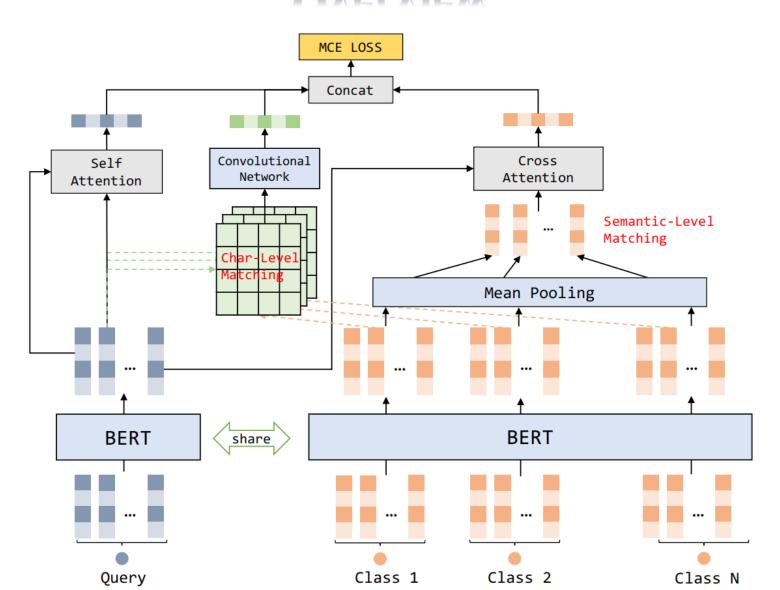
A Multi-Granularity Matching Attention Network for Query Intent Classification in E-commerce Retrieval

Chunyuan Yuan^{*}, Yiming Qiu, Mingming Li, Haiqing Hu, Songlin Wang, Sulong Xu chunyuany93@outlook.com,{qiuyiming3,limingming65,huhaiqing1,wangsonglin7,xusulong}@jd.com JD.com, Beijing, China

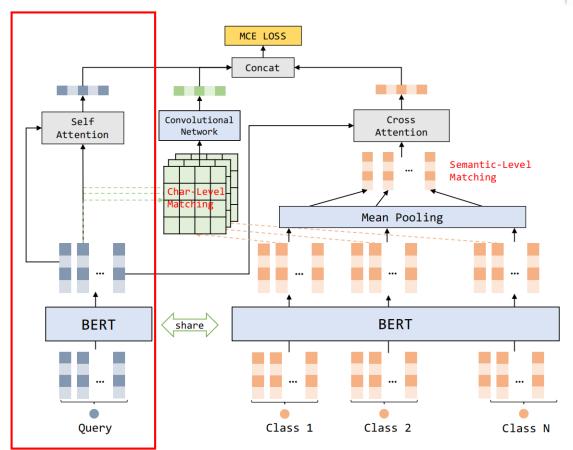
2023. 6. 25 • ChongQing

- 1.Introduction
- 2.Overview
- 3.Methods
- 4. Experiments

Introduction

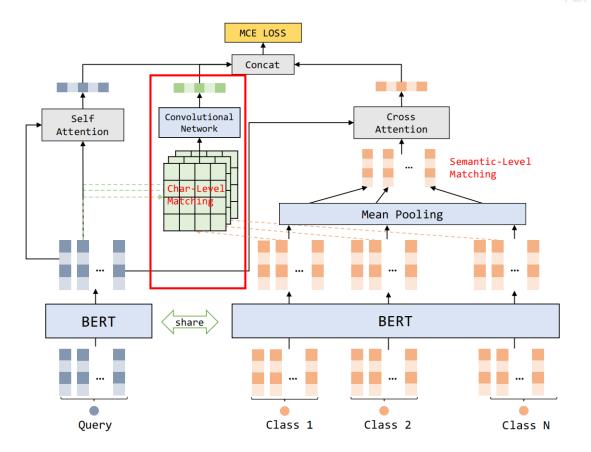

book a hotel

0.


搜索

and the second s

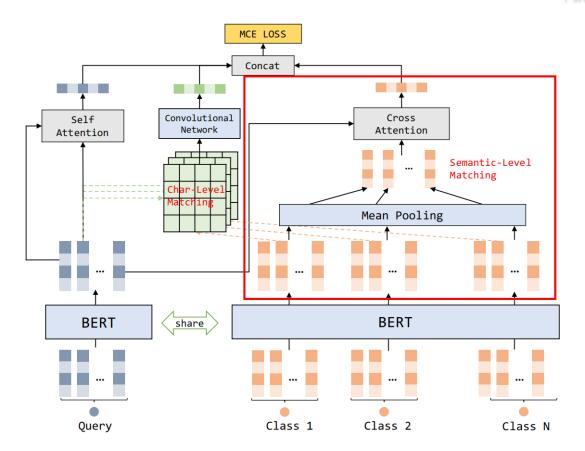
Overview


$$Q_{i} = BERT_{Token}([x_{1}, x_{2}, ..., x_{L_{q}}]),$$

$$C_{j} = BERT_{Token}([n_{1}, n_{2}, ..., n_{L_{n}}, m_{1}, m_{2}, ..., m_{L_{m}}]),$$
(1)

$$\mathbf{u}_{i} = \mathbf{v}_{i} \tanh \left(\mathbf{W}_{q} \mathbf{Q}_{i}^{T} \right),$$

$$\mathbf{q}_{i} = \sum_{t=1}^{L_{q}} \mathbf{Q}_{i,t} \mathbf{softmax}(\mathbf{u}_{i,t}),$$
(2)

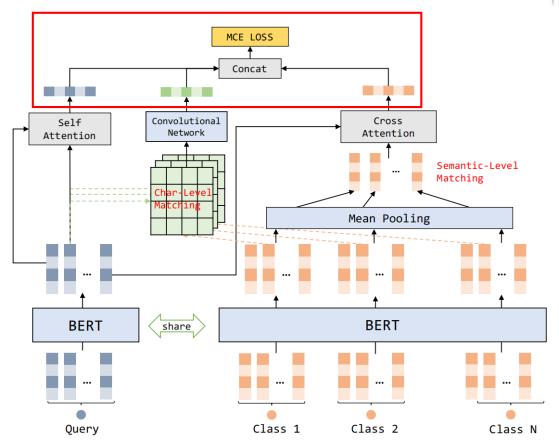

$$\mathbf{M}_{j} = \mathbf{Q}_{i} \mathbf{W}_{qc} \mathbf{C}_{j}^{T},$$

$$\mathbf{M} = [\mathbf{M}_{1}, \mathbf{M}_{2}, \dots, \mathbf{M}_{C}],$$
(3)

$$\mathbf{s}_{i,j}^{(k)} = ReLU\left(\sum_{a=0}^{r_w} \sum_{b=0}^{r_h} \mathbf{W}_{a,b} \mathbf{M}_{i+a,j+b}^{(k)} + \mathbf{b}\right), \tag{4}$$

$$\widetilde{\mathbf{s}}_{i,j}^{(k)} = \max_{0 \le c \le p_w} \max_{0 \le d \le p_h} \mathbf{s}_{i+c,j+d}^{(k)}, \tag{5}$$

 $\mathbf{Z}_1 \in \mathbb{R}^{|C| \times d}$, which contains fine-grained matching features between query and each category



$$\mathbf{c}_{i} = \mathbf{mean}(\mathbf{C}_{i}),$$

$$\mathbf{C} = [\mathbf{c}_{1}, \mathbf{c}_{2}, \dots, \mathbf{c}_{|C|}],$$
(6)

where $C \in \mathbb{R}^{|C| \times d}$ is the representation of all categories.

$$\mathbf{Z}_2 = \mathbf{Q}_i^T \mathbf{softmax}(\mathbf{CW}_{qs} \mathbf{Q}_i^T), \tag{7}$$

$$\widehat{y} = \mathbf{W}_{x}^{T} ReLU \left(\mathbf{q}_{i} \mathbf{W}_{qf} + [\mathbf{Z}_{1}, \mathbf{Z}_{2}] \mathbf{W}_{z} \right), \tag{8}$$

$$\mathcal{L} = -\sum_{c=1}^{C} y^{c} \log \left(\sigma\left(\widehat{y}^{c}\right)\right) + \left(1 - y^{c}\right) \log \left(1 - \sigma\left(\widehat{y}^{c}\right)\right) , \qquad (9)$$

Table 1: Dataset statistics.

Statistic	Scene I)ata	Category Data		
Statistic	Train	Test	Train	Test	
Queries	4,459,214	9,877	4,593,037	9,877	
Total Labels	8	8	90	90	
Avg. chars	7.63	5.00	7.69	5.00	
Avg. # of labels	1.04	1.67	1.19	1.77	
Min. # of labels	1	1	1	1	
Max. # of labels	7	3	26	21	

Table 2: The experimental results that compared with multi-label classification and query intent classification models.

	Scene Data			Category Data								
Models		Micro			Macro			Micro			Macro	
	Prec.	Recall	F1	Prec.	Recall	F1	Prec.	Recall	F1	Prec.	Recall	F1
RCNN [6]	94.14	77.67	85.11	83.09	86.01	83.69	69.76	54.03	60.89	70.51	62.42	62.15
XML-CNN [7]	94.73	76.00	84.34	80.87	86.47	81.91	66.73	56.36	61.11	68.08	64.15	62.12
LEAM [12]	94.19	68.46	79.29	88.84	78.60	82.84	72.67	49.91	59.18	69.96	47.56	52.15
LSAN [14]	94.73	74.14	83.18	80.31	86.05	81.48	68.33	51.36	58.64	71.64	61.00	61.93
PHC [17]	94.63	77.93	85.47	83.17	86.62	83.74	60.12	59.41	59.76	64.08	64.90	60.67
DPHA [20]	95.23	77.43	85.41	82.01	84.35	82.06	71.55	54.06	61.58	75.39	54.99	61.83
SSA-AC [18]	94.82	78.15	85.68	84.15	84.26	83.92	72.36	53.20	61.32	74.38	62.19	63.38
MMAN	95.52	82.26	88.39	87.26	86.15	85.93	75.64	55.07	63.74	75.77	64.56	66.47
w/o self-matching	96.03	81.24	88.02	88.14	85.72	84.86	75.25	54.35	63.11	73.26	64.08	65.68
w/o char matching	95.16	80.28	87.09	82.12	89.38	83.74	68.72	57.13	62.39	72.16	62.58	65.12
w/o semantic matching	95.86	81.14	87.89	84.36	87.62	84.15	72.18	56.16	63.17	73.61	63.27	65.05
BERT [4]	95.39	79.22	86.56	81.20	88.48	83.00	65.88	56.23	60.67	68.47	67.28	64.53

Table 3: Online improvements of the MMAN. Improvements are statistically significant with p < 0.05 on paired t-test.

	GMV	UV value	UCVR
Online model (BERT)	-	-	-
MMAN	+0.351%	+0.401%	+0.113%

Table 4: Online performance of the MMAN compared with the online BERT model. Improvements of MMAN are statistically significant with p < 0.01 on paired t-test.

Scene	PV	Click
hotel booking	+74.85%	+36.49%
travel and vacation	+9.94%	+1.75%
checkup service	+5.95%	+4.89%
aesthetic medicine	+44.42%	+26.30%
medical consultation	+22.76%	+5.66%
car service	+20.17%	+9.38%
furniture customization	+10.07%	+6.60%
Overall	+19.62%	+7.78%

Thanks!